
US. Department of Energy

Preprint:
UCRL-JC-131396

A facility for creating
Python extensions in C++

P. F. Dubois

This paper was prepared for submittal to the
Seventh International Python Conference
Houston, Texas, November 9-I 3, 1998

July 14,1998

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

July 14, 1998

A facility for creating
Python extensions in C++

Paul F. Dubois

Seventh International Python Conference
November g-13,1998
Houston, Texas

Abstract

Python extensions are usually created by writing the glue that connects Python to the
desired new functionality in the C language. While simple extensions do not require
much effort, to do the job correctly with full error checking is tedious and prone to
errors in reference counting and to memory leaks, especially when errors occur. The
resulting program is difficult to read and maintain. By designing suitable C++ classes to
wrap the Python C API, we are able to produce extensions that are correct and which
clean up after themselves correctly when errors occur. This facility also integrates the
C++ and Python exception facilities.

This paper briefly describes our package for this purpose, named CXX. The emphasis is
on our design choices and the way these contribute to the construction of accurate
Python extensions. We also briefly relate the way CXX’s facilities for sequence classes
allow use of C++‘s Standard Template Library (STL) algorithms on C++ sequences.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract No. W-7405-Eng-48.

1 of11

The software described herein has been released for unlimited redistribution: please see
the detailed legal information that accompanies the software for further information.

2of 11 A facility for creating Python extensions in C++

Correctness is the problem we wanted to solve

1 .O Correctness is the problem we wanted to solve

Anyone who has extended Python using C knows that it is not hard to get something
simple working fast. There is even a small Tk-based GUI that will write the framework
of a C extension which you can just fill in. However, once you attempt to write an exten-
sion of any significant size or complexity, you quickly find it is difficult to maintain cor-
rectness, and that the main size and complexity of your program quickly becomes
dominated by the extensive coding required for detecting errors and maintaining correct
reference counts.

We felt that a suitable set of C++ classes could be used to alleviate these difficulties. In
particular, C++‘s facilities for defining behaviors during object creation, copying, and
assignment allow us to get reference counting right, and C++‘s behavior when a C++
exception is thrown is ideal for solving the problem of cleaning up temporary objects
when an error is detected. C++ ensures that each local object in the function where the
exception is thrown will be properly destroyed, and so on up the call chain until either
the job terminates or the exception is “caught”. In our case, we will catch the exceptions
thrown in Python extensions and convert them into Python exceptions, thus giving the
Python user a chance to regain control.

A secondary goal was to bring the power of the STL to Python container classes. By
defining a suitable facility, we are able to directly apply STL algorithms (such as sort) to
Python sequences, and to use iterators over Python sequences so that Python extensions
written using C++ look like C++ programming usually looks.

2.0 Each Python type is wrapped by a class

The CXX class hierarchy is rooted in class Object, in namespace Py. An instance of
Object holds a pointer to a Python object and owns a reference to that object. When this
instance is destroyed, the destructor decrements the Python object’s reference count. An
Object can be created that holds a pointer to any kind of Python object. The Object class
contains methods that correspond to each of the general Python operations. Binary oper-
ators such as plus are defined so that we have access to those behaviors for Objects.
Stream output is defined to use the object’s string representation str().

Sometimes we want to work with the properties of Python objects that are specific to
their actual type, We define descendants of Object for each of the Python types; these
more specific classes test the Python object to which they are going to point to make
sure it is a proper member of the desired type. When this test fails, an exception is
thrown. Thus, creating an instance of one of these more specific types not only gives us
access to the API appropriate to such an object, it also acts as a runtime type-check.

Here is a simple example. The following program fragment is part of the test routine for
the Diet class. Diet, List, String, and Int are CXX classes which correspond to Python’s
dictionary, list, string, and integer objects.

Diet a, b;
List v;
String s(“tw0”);

A facility for creating Python extensions in C++ 3ofll

Each Python type is wrapped by a class

a [“one”] = Int(1);
a [s] = Int(2);
a[“three”] = Int(3);

v = a.values 0;
sort (v.begin 0, v.end 0);

b = a;
b.clear();

Here we see that a Python dictionary object a is created, and three key/value pairs are
added to it. Then the list of values in extracted into a Python list object, and the list
object is sorted using the STL algorithm sort. Finally, a second reference b to the
dictionary is created, and the dictionary-specific method clear is called to empty it.

Note that at any point if an error had occurred in one of the underlying calls to the
Python C API, the result would have been the propagation of an exception. In the act of
leaving the routine that contains the above fragment, the objects we had created would
be correctly destroyed. If we were to write the above program in C, it would be much,
much longer and to correctly identify at each possible point of error, which Python
objects need to be destroyed before returning, would be a terrible problem.

2.1 Special facilities are provided for sequences

Note that in the previous example that we were able to use the STL algorithm sort on an
instance of class List. This is possible because each of the classes in CXX that corre-
sponds to a sequence type in Python has been declared to inherit from a special tem-
plated class SeqBase<T>. Here the template parameter T is intended to be some
descendent of Object which defines the most specific type expected for the element of
the sequence. Of course, for the standard Python sequences, this type is Object itself:
that is, the most we know about an element of a Python list is that it is an Object. Since
this is such a common case, the name Sequence is available as a short-hand for
SeqBase<Object>.

SeqBase<T> defines a number of facilities that assist the C++ programmer in dealing
with sequences. These are:

l Access to sequence elements using the usual array notation works as expected: s[i] is
the i’th element of the sequence.

l Contained classes iterator and const-iterator are defined for read/write and read-only
access to traversals. For example, to print out each item of a list using stream I/O, we
might do:
List mylist;
mylist = . . . some list . . .
for(List::iterator j = mylist.begin(); j != mylist.end(); ++j) (

tout << *j;

4of 11 A facility for creating Python extensions in C++

Creating objects

If you are not familiar with STL iterators, this doubtless looks very strange to you.
Think of an iterator as a kind of pointer that when incremented knows how to
advance itself to the next item in a container. Traditional pointers can only do this
with contiguous data structures. Iterators are thus a generalization of C pointers.

l Proper inheritance and internal definitions are given to make SeqBase<T> a proper
STL random-access container, thus allowing use of the full range of STL algorithms.

3.0 Creating objects

Each of the CXX classes has a variety of constructors available, appropriate to the par-
ticular type. For example, class Float instances can be constructed from C doubles:

double d;
Float x(d); // make a Float whose value is d

Each of the classes has a constructor which accepts an existing PyObject*. The class
instance increments the reference count on the object, thus giving itself an owned refer-
ence to the object. When the instance is destroyed, its destructor decrements the refer-
ence count.

When the Python object is created by a call to the Python C API the result is often an
owned reference already. In that case we want the resulting CXX class instance to take
over this ownership. (Since we wrap a great deal of the Python C API in CXX classes,
this is more of an issue within CXX’s implementation than it is for the end user.) To this
end CXX defines a helper class FromAPI whose net effect is to decrement the reference
count on a PyObject*. For example, PyDouble-FromDouble is a routine in the Python C
API that returns an owned reference to a Python float object. Thus, were we to do:

double d;
Float x (PyDouble-FromDouble(d //Incorrect

the reference count would be incorrect. (Of course, we would not normally do this since
the constructor Float x (d) would do the job much more simply.) Instead, we should
write:

Float x(FromAPI(PyDouble-FromDouble(d) // Correct

3.1 No illegal objects permitted

It is part of the philosophy of CXX that no illegal objects are ever permitted to exist.
Each and every CXX constructor must end with its pointer pointing to a legitimate
Python object acceptable to that class. This was a decision we came to after trying it
both ways. The rule has the virtue of eliminating any concern about whether an object
represents a legitimate object; it is the equivalent of eliminating the possibility of a dan-
gling pointer. No consumer of CXX ever need test an object to see if it is a legitimate
representative of its class, because it is or its constructor would have thrown an excep-
tion.

The downside of this decision is a burden on those extending CXX to add new types.
Essentially, one must be able to construct a legal member of the parent class as part of

A facility for creating Python extensions in C++ 5ofll

Creating objects

your own constructor process. Class Object has a default constructor that takes no argu-
ments and which sets the pointer to a reference to Python’s Py-None object. So, if you
are inheriting directly from Object, this is not a problem. Class SeqBase<T>‘s default
constructor constructs a reference to a zero-length tuple. In both cases this is a waste of
computational effort since the pointer obtained will be immediately replaced by one cal-
culated by the new class’ constructor. This is not the only place in CXX where some
effort is wasted in order to ensure correctness, and while every effort has been made to
be efficient, when in doubt we have chosen correctness rather than efficiency.

3.2 The classes available in CXX

The object hierarchy in CXX is as follows. Inheritance is shown by indentation. Besides
the Object family, there is a family of exception classes and some classes to help in the
creation of Python modules and extension objects. All names in CXX are contained
within the namespace Py.

Object
Type
Module
Integer
Float
Long
Complex
Char (Strings of length 1)
SeqBase<T>

Sequence (= SeqBase<Object>)
String
Tuple
List
Array (NumPy array)

MapBase<T>
Mapping (= MapBase<Object>)
Diet

Exception
IndexError
RuntimeError

. (other errors corresponding to other Python exceptions)
MethodTable
ExtensionModule
PythonType
PythonExtension<T>
ExtensionType<T>

In addition there are a number of functions defined at the global (namespace Py) level.
These include the usual binary arithmetic operators and stream output operators.

The documentation shows the tables of methods for each class. Class Object defines a
large set of methods that is thereby made available on all of its children. Notable among
these are:

6of 11 A facility for creating Python extensions in C+t

Making an extension module

l boo1 accepts (PyObject* p) tests whether or not a member of this class could be con-
structed using p, that is, whether p points to an object this class was intended to
wrap;

l PyObject* operator *() returns the PyObject* contained in this wrapper; this is also
available as the result of method ptr().

l Type type0 returns the (wrapped) type object associated with this object; a series of
queries such as isString () are available to test membership in the standard Python
object classes.

l Object getAttr (“name”) returns the attribute name of the current object; this is
equivalent to Python’s obname operator.

4.0 Making an extension module

To make a Python extension module is now straight-forward. Let us begin by examining
the form to use for a module method.

4.1 Writing a module method

The generic form of the extension module is the same as when using C. First you write a
function whose signature is

PyObject* mymethod (PyObject* self, PyObject* args)

In this form, we know that the argument self is unused, and that the argument args is
actually always a tuple. We will therefore always have the same structure to our method:

PyObject* mymethod (PyObject* self, PyObject* args) {
Tuple the-arguments (args);
try {

do stuff
return the-answer;

except (Exception&) (
return Null();

The try/except clause converts any Python API errors or CXX-detected errors into an
exception which is caught in this except clause and converted into a Python exception.
(You can also catch the exception instance and clear the exception, as explained in the
documentation).

In writing the “do stuff’ part of the method, we are now greatly assisted by CXX:

l We can access the i’ th argument as the-arguments [i]

l We can affirm the required type of an argument by using it in a copy constructor for
the desired type. For example, if the first argument must be a string, we could write:
String s = the-arguments[O];

A facility for creating Python extensions in C++ 7ofll

Making an extension module

This will throw an exception if the first argument is not a string, or if there is no first
argument. (Class Tuple also has methods which can check for a certain number or a
range of numbers of arguments).

l We don’t need to worry about keeping track of any temporary objects in case of
errors; cleanup is automatic when the exception is thrown.

l We have direct access to the Python API via the methods of the CXX classes, but in
a way that completely ensures correct reference counting. If we use the C API
directly we have to make correct use of FromAPI but the need for this is infrequent.

l We can carry out sequence operations in a natural manner, much as if we were work-
ing directly in Python, rather than using sequences of Python API calls whose errors
must all be checked.

Here for example is a method written using this method that sums the set of float argu-
ments given to it.

using namespace Py;

static PyObject *
ex-sum (PyObject* self, PyObject* args)
1

Tuple a(args);
&Y i

Float f, g;
int i;
f = 0.0;
for (i = 0; i < a.length(); i++) (

g = a[i];
f=f+g;

1
return new-reference-to(f);

catch (const Exception&) {
return Null 0;

1
1

The function new-reference-to (Object ob) returns an owned reference to the object ob.
In this way the Python float object we have created to hold the answer survives the
destruction of the variablefthat occurs when we return from ex-sum. If you want a
method that doesn’t return anything you return Nothing0 and to signal a Python excep-
tion you return Null().

Note in this example how the assignment g = a[i] not only extracted the i’ th argument
but ensured that it was a float object. It would have also worked perfectly well not to do
this step but directly add f + a[i]. This might be desired, in fact, if you did not want to
insist that the arguments be floats.

8of 11 A facility for creating Python extensions in C++

Creating extension object types

4.2 Creating the extension module

As usual, we now need an init function for our extension module. In this init routine,
which must have C linkage so that Python can find it, we create the extension module
and add the method(s) desired to it, as well as any objects we wish to seed into its dictio-
nary (here, as an example, we add the constant pi).

extern “C” void initexample 0;

void initexample ()
I

static ExtensionModule example (“example”);
example.add(“sum”, ex-sum, “sum(arglist) = sum of arguments”);
Diet d = example.initialize();
d [“pi”] = Float(3.14159);

1

Note the simplicity compared to writing the same thing in C, with its mysterious “static
forward”, Python type tables, etc.

5.0 Creating extension object types

CXX also contains a facility for construction of new Python types. This facility is not
yet completely satisfactory, but we believe it is a step forward. The key point is that to
begin a new Python type we inherit from class PythonExtension, which in turn inherits
from PyObject. Thus, at one blow we have made our type a descendant of PyObject,
created a type object for it, and created a function that will check whether an object is of
this new type. Then we initialize the object in a similar manner to the extension module,
adding behaviors and their descriptions. We also write the methods in a similar way.

PythonExtension is a ternplated class, and the template argument we give it is, shock-
ingly, the class we are defining. This is an example of what Scott Meyers has called the
“Curiously Recursive Template Pattern”. PythonExtension sets up a Python type object
unique to this type, creates a static function

static boo1 check (PyObject *)

that tests membership, and sets a deletion behavior that ensures the calling of the class’
destructor in the case of its Python reference count going to zero.

Here, for example, is the start of a class “r” defining new objects of type “r” similar to
the Python range object:

class r: public PythonExtension<r> {
public:

long start;
long stop;
long step;
r (long start-, long stop-, long step- = 1L)
1

A facility for creating Python extensions in C++ 9of11

Creating extension object types

start = start-;
stop = stop-;
step = step-;

4)

std::cout << “r destroyed ” << this << std::endl;

In a method similar to the way we implemented the module method above, we define
the Python behaviors of the new object, such as r-repr, r_getattr, r-length, and methods
we choose such as amethod, value, etc. Then in some module’s initialization procedure
is a call to init-rtype:

void init-rtype () (
r::behaviors().name(“r”);
r::behaviors().doc(“r objects: start, stop, step”);
r::behaviors().repr(r-repr);
r::behaviors().getattr(r_getattr);
r::behaviors().sequence-length(rJength);
r::behaviors().sequence-item(r-item);
r::behaviors().sequence-slice(r-slice);
r::behaviors().sequence_concat(r_concat);
r::methods().add(“amethod”, r-amethod);
r::methods().add(“assign”, r-assign);
r::methods().add(“value”, r-value);

Extension objects defined in this way have an additional desirable property that
ordinary Python extensions do not: they do not have to live on the heap. Of course, as
in C++ one must be careful not to retain a reference to a local object after the routine
returns. But, with care, one can have the efficiency of objects using stack rather than
heap memory. With correct use both new/deleted objects and stack objects will coexist
nicely.

At this point it would be nice to somehow get a child of Object, say R, whose job it
was to hold pointers to objects of type r. The necessary acceptance test is available as
r::check, defined for us when we inherited from PythonExtension<r>. Class
ExtensionObject<r> will in fact do this, but it does not contain any methods specific to
r. This area and a possible connection to research being done by Geoffrey Furnish at
Los Alamos are the subject of future investigations. One goal of this research is to
eliminate the need for the try blocks in each method, by hoisting the coordination of
Python I C++ exceptions up higher.

10of 11 A facility for creating Python extensions in C++

A good match of capabilities

6.0 A good match of capabilities

We see that the strengths of C++ are a good match for the weaknesses in the Python lan-
guage extension process. Use of C++ in this way should lead to much smaller, cleaner,
and easier to write extensions, with confidence in their correctness. Reference-counting
errors, among the most difficult to prevent and to diagnose when using C, are avoided
automatically, even in the difficult case of when an error occurs.

Additional benefits to this approach are the merging of the Python and C++ exception
facilities and the ability to write extension modules and objects much more naturally
and safely. The facility is completely extensible via inheritance to the users’ own
classes.

Research remains on further integrating Python and C++ but we believe CXX represents
a significant step forward.

A facility for creating Python extensions in C++ 11 of 11

